当前位置: 首页>行业 >

【机器学习】集成学习代码练习(随机森林、GBDT、XGBoost、LightGBM等) 当前报道

来源: | 时间: 2022-12-24 23:24:17 |

本文是中国大学慕课《机器学习》的“集成学习”章节的课后代码。


(资料图片)

课程地址:

https://www.icourse163.org/course/WZU-1464096179

课程完整代码:

https://github.com/fengdu78/WZU-machine-learning-course

代码修改并注释:黄海广,haiguang2000@wzu.edu.cn

importwarningswarnings.filterwarnings("ignore")importpandasaspdfromsklearn.model_selectionimporttrain_test_split

生成数据

生成12000行的数据,训练集和测试集按照3:1划分

fromsklearn.datasetsimportmake_hastie_10_2data,target=make_hastie_10_2()

X_train,X_test,y_train,y_test=train_test_split(data,target,random_state=123)X_train.shape,X_test.shape

((9000, 10), (3000, 10))

模型对比

对比六大模型,都使用默认参数

fromsklearn.linear_modelimportLogisticRegressionfromsklearn.ensembleimportRandomForestClassifierfromsklearn.ensembleimportAdaBoostClassifierfromsklearn.ensembleimportGradientBoostingClassifierfromxgboostimportXGBClassifierfromlightgbmimportLGBMClassifierfromsklearn.model_selectionimportcross_val_scoreimporttimeclf1=LogisticRegression()clf2=RandomForestClassifier()clf3=AdaBoostClassifier()clf4=GradientBoostingClassifier()clf5=XGBClassifier()clf6=LGBMClassifier()forclf,labelinzip([clf1,clf2,clf3,clf4,clf5,clf6],["LogisticRegression","RandomForest","AdaBoost","GBDT","XGBoost","LightGBM"]):start=time.time()scores=cross_val_score(clf,X_train,y_train,scoring="accuracy",cv=5)end=time.time()running_time=end-startprint("Accuracy:%0.8f (+/-%0.2f),耗时%0.2f秒。模型名称[%s]"%(scores.mean(),scores.std(),running_time,label))

Accuracy: 0.47488889 (+/- 0.00),耗时0.04秒。模型名称[Logistic Regression]Accuracy: 0.88966667 (+/- 0.01),耗时16.34秒。模型名称[Random Forest]Accuracy: 0.88311111 (+/- 0.00),耗时3.39秒。模型名称[AdaBoost]Accuracy: 0.91388889 (+/- 0.01),耗时13.14秒。模型名称[GBDT]Accuracy: 0.92977778 (+/- 0.00),耗时3.60秒。模型名称[XGBoost]Accuracy: 0.93188889 (+/- 0.01),耗时0.58秒。模型名称[LightGBM]

对比了六大模型,可以看出,逻辑回归速度最快,但准确率最低。而LightGBM,速度快,而且准确率最高,所以,现在处理结构化数据的时候,大部分都是用LightGBM算法。

XGBoost的使用 1.原生XGBoost的使用

importxgboostasxgb#记录程序运行时间importtimestart_time=time.time()#xgb矩阵赋值xgb_train=xgb.DMatrix(X_train,y_train)xgb_test=xgb.DMatrix(X_test,label=y_test)##参数params={"booster":"gbtree",#"silent":1,#设置成1则没有运行信息输出,最好是设置为0.#"nthread":7,#cpu线程数默认最大"eta":0.007,#如同学习率"min_child_weight":3,#这个参数默认是1,是每个叶子里面h的和至少是多少,对正负样本不均衡时的0-1分类而言#,假设 h 在0.01 附近,min_child_weight 为 1 意味着叶子节点中最少需要包含 100个样本。#这个参数非常影响结果,控制叶子节点中二阶导的和的最小值,该参数值越小,越容易 overfitting。"max_depth":6,#构建树的深度,越大越容易过拟合"gamma":0.1,#树的叶子节点上作进一步分区所需的最小损失减少,越大越保守,一般0.1、0.2这样子。"subsample":0.7,#随机采样训练样本"colsample_bytree":0.7,#生成树时进行的列采样"lambda":2,#控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。#"alpha":0,#L1正则项参数#"scale_pos_weight":1, #如果取值大于0的话,在类别样本不平衡的情况下有助于快速收敛。#"objective":"multi:softmax",#多分类的问题#"num_class":10,#类别数,多分类与multisoftmax并用"seed":1000,#随机种子#"eval_metric":"auc"}plst=list(params.items())num_rounds=500#迭代次数watchlist=[(xgb_train,"train"),(xgb_test,"val")]

#训练模型并保存#early_stopping_rounds当设置的迭代次数较大时,early_stopping_rounds可在一定的迭代次数内准确率没有提升就停止训练model=xgb.train(plst,xgb_train,num_rounds,watchlist,early_stopping_rounds=100,)#model.save_model("./model/xgb.model")#用于存储训练出的模型print("bestbest_ntree_limit",model.best_ntree_limit)y_pred=model.predict(xgb_test,ntree_limit=model.best_ntree_limit)print("error=%f"%(sum(1foriinrange(len(y_pred))ifint(y_pred[i]>0.5)!=y_test[i])/float(len(y_pred))))#输出运行时长cost_time=time.time()-start_timeprint("xgboostsuccess!","\n","costtime:",cost_time,"(s)......")

[0]train-rmse:1.11000val-rmse:1.10422[1]train-rmse:1.10734val-rmse:1.10182[2]train-rmse:1.10465val-rmse:1.09932[3]train-rmse:1.10207val-rmse:1.09694

……

[497]train-rmse:0.62135val-rmse:0.68680[498]train-rmse:0.62096val-rmse:0.68650[499]train-rmse:0.62056val-rmse:0.68624best best_ntree_limit 500error=0.826667xgboost success!  cost time: 3.5742645263671875 (s)......

2.使用scikit-learn接口

会改变的函数名是:

eta -> learning_rate

lambda -> reg_lambda

alpha -> reg_alpha

fromsklearn.model_selectionimporttrain_test_splitfromsklearnimportmetricsfromxgboostimportXGBClassifierclf=XGBClassifier(# silent=0, #设置成1则没有运行信息输出,最好是设置为0.是否在运行升级时打印消息。#nthread=4,#cpu线程数默认最大learning_rate=0.3,#如同学习率min_child_weight=1,#这个参数默认是1,是每个叶子里面h的和至少是多少,对正负样本不均衡时的0-1分类而言#,假设 h 在0.01 附近,min_child_weight 为 1 意味着叶子节点中最少需要包含 100个样本。#这个参数非常影响结果,控制叶子节点中二阶导的和的最小值,该参数值越小,越容易 overfitting。max_depth=6,#构建树的深度,越大越容易过拟合gamma=0,#树的叶子节点上作进一步分区所需的最小损失减少,越大越保守,一般0.1、0.2这样子。subsample=1,#随机采样训练样本训练实例的子采样比max_delta_step=0,#最大增量步长,我们允许每个树的权重估计。colsample_bytree=1,#生成树时进行的列采样reg_lambda=1,#控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。#reg_alpha=0,#L1正则项参数#scale_pos_weight=1, #如果取值大于0的话,在类别样本不平衡的情况下有助于快速收敛。平衡正负权重#objective="multi:softmax",#多分类的问题指定学习任务和相应的学习目标#num_class=10,#类别数,多分类与multisoftmax并用n_estimators=100,#树的个数seed=1000#随机种子#eval_metric="auc")clf.fit(X_train,y_train)y_true,y_pred=y_test,clf.predict(X_test)print("Accuracy:%.4g"%metrics.accuracy_score(y_true,y_pred))

Accuracy : 0.936

LIghtGBM的使用 1.原生接口

importlightgbmaslgbfromsklearn.metricsimportmean_squared_error#加载你的数据#print("Loaddata...")#df_train=pd.read_csv("../regression/regression.train",header=None,sep="\t")#df_test=pd.read_csv("../regression/regression.test",header=None,sep="\t")##y_train=df_train[0].values#y_test=df_test[0].values#X_train=df_train.drop(0,axis=1).values#X_test=df_test.drop(0,axis=1).values#创建成lgb特征的数据集格式lgb_train=lgb.Dataset(X_train,y_train)#将数据保存到LightGBM二进制文件将使加载更快lgb_eval=lgb.Dataset(X_test,y_test,reference=lgb_train)#创建验证数据#将参数写成字典下形式params={"task":"train","boosting_type":"gbdt",#设置提升类型"objective":"regression",#目标函数"metric":{"l2","auc"},#评估函数"num_leaves":31,#叶子节点数"learning_rate":0.05,#学习速率"feature_fraction":0.9,#建树的特征选择比例"bagging_fraction":0.8,#建树的样本采样比例"bagging_freq":5,#k意味着每k次迭代执行bagging"verbose":1#<0显示致命的,=0显示错误(警告),>0显示信息}print("Starttraining...")#训练cvandtraingbm=lgb.train(params,lgb_train,num_boost_round=500,valid_sets=lgb_eval,early_stopping_rounds=5)#训练数据需要参数列表和数据集print("Savemodel...")gbm.save_model("model.txt")#训练后保存模型到文件print("Startpredicting...")#预测数据集y_pred=gbm.predict(X_test,num_iteration=gbm.best_iteration)#如果在训练期间启用了早期停止,可以通过best_iteration方式从最佳迭代中获得预测#评估模型print("error=%f"%(sum(1foriinrange(len(y_pred))ifint(y_pred[i]>0.5)!=y_test[i])/float(len(y_pred))))

Start training...[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000448 seconds.You can set `force_col_wise=true` to remove the overhead.[LightGBM] [Info] Total Bins 2550[LightGBM] [Info] Number of data points in the train set: 9000, number of used features: 10[LightGBM] [Info] Start training from score 0.012000[1]valid_0"s auc: 0.814399valid_0"s l2: 0.965563Training until validation scores don"t improve for 5 rounds[2]valid_0"s auc: 0.84729valid_0"s l2: 0.934647[3]valid_0"s auc: 0.872805valid_0"s l2: 0.905265[4]valid_0"s auc: 0.884117valid_0"s l2: 0.877875[5]valid_0"s auc: 0.895115valid_0"s l2: 0.852189

……

[191]valid_0"s auc: 0.982783valid_0"s l2: 0.319851[192]valid_0"s auc: 0.982751valid_0"s l2: 0.319971[193]valid_0"s auc: 0.982685valid_0"s l2: 0.320043Early stopping, best iteration is:[188]valid_0"s auc: 0.982794valid_0"s l2: 0.319746Save model...Start predicting...error=0.664000

2.scikit-learn接口

fromsklearnimportmetricsfromlightgbmimportLGBMClassifierclf=LGBMClassifier(boosting_type="gbdt",#提升树的类型gbdt,dart,goss,rfnum_leaves=31,#树的最大叶子数,对比xgboost一般为2^(max_depth)max_depth=-1,#最大树的深度learning_rate=0.1,#学习率n_estimators=100,#拟合的树的棵树,相当于训练轮数subsample_for_bin=200000,objective=None,class_weight=None,min_split_gain=0.0,#最小分割增益min_child_weight=0.001,#分支结点的最小权重min_child_samples=20,subsample=1.0,#训练样本采样率行subsample_freq=0,#子样本频率colsample_bytree=1.0,#训练特征采样率列reg_alpha=0.0,#L1正则化系数reg_lambda=0.0,#L2正则化系数random_state=None,n_jobs=-1,silent=True,)clf.fit(X_train,y_train,eval_metric="auc")#设置验证集合verbose=False不打印过程clf.fit(X_train,y_train)y_true,y_pred=y_test,clf.predict(X_test)print("Accuracy:%.4g"%metrics.accuracy_score(y_true,y_pred))

Accuracy : 0.927

参考

1.https://xgboost.readthedocs.io/

2.https://lightgbm.readthedocs.io/

3.https://blog.csdn.net/q383700092/article/details/53763328?locationNum=9&fps=1

往期精彩回顾适合初学者入门人工智能的路线及资料下载(图文+视频)机器学习入门系列下载机器学习及深度学习笔记等资料打印《统计学习方法》的代码复现专辑机器学习交流qq群955171419,加入微信群请扫码

关键词:

 

热文推荐

透视雪佛兰大降价的幕后:销量低迷,八月无一辆车的销量破万

继上汽通用别克开启限时优惠之后,雪佛兰也按捺不住了。科鲁泽(参数|询

2023-09-09

茵郁道馆(关于茵郁道馆简述)

,你们好,今天0471房产来聊聊一篇郁道馆,郁道馆简述的文章,网友们对

2023-09-09

“这学还怎么上”?某小学开学一年级有43个班,家长哭诉卷不动了

“这学还怎么上”?某小学开学一年级有43个班,家长哭诉卷不动了,初中,

2023-09-09

夏东豪身高(夏东豪和谁牵手成功)

来为大家解答以上的问题。夏东豪身高,夏东豪和谁牵手成功这个很多人还

2023-09-09

莲台寺(关于莲台寺的简介)

1、莲台寺始建于唐朝,几经兴衰,因唐高僧智诜和尚曾主持莲台寺,在国

2023-09-09

首日产生14枚金牌!2023年全国青年(U20)田径锦标赛在我市开赛

9月8日上午2023年全国青年(U20)田径锦标赛在大庆市体育场开赛据了解

2023-09-09

“叫我们大队的人来”,女子理发店亮证件威胁老板!官方通报

据@郯城发布微博,郯城县联合调查组发布9月8日情况通报称,针对网传“

2023-09-08

龙虎榜|蓝英装备今日涨停,上榜营业部席位合计净买入9230.88万元

9月8日,蓝英装备今日涨停,龙虎榜数据显示,上榜营业部席位全天成交1

2023-09-08

古代皇帝用什么语言

古代皇帝用什么语言1、古代皇帝用什么语言当时的官话,也是官方语言;

2023-09-08

又大跌!再度跌破20万

碳酸锂又处于新一轮价格下滑周期中。

2023-09-08

记录走过半个世纪的爱情,金山石化街道开展“金婚摄影”活动

“叔叔,再靠近阿姨一点”“阿姨,动作再俏皮一点,对,看镜头!”随着

2023-09-08

苦茶随笔(关于苦茶随笔简述)

,你们好,今天0471房产来聊聊一篇茶随笔,茶随笔简述的文章,网友们对

2023-09-08

河南修武县属于哪个市(焦作修武县地理位置及经济发展情况)

河南修武县作为焦作市的一个县级行政区,处于中部偏东区域,是河南省发

2023-09-08

第十一届环鄱赛开赛 30多个国家及港澳台地区选手参赛

中新网上饶9月8日电 (记者 吴鹏泉)第十一届环鄱阳湖国际自行车大

2023-09-08

iPhone 15系列曝光:15 Plus首发4800万主摄

iPhone15系列即将发布,据新爆料,该系列将有三种不同的影像规格。iPhone

2023-09-08

电脑自带的酷狗音乐是在哪个盘里_电脑酷狗怎么在我的电脑显示酷狗音乐云盘

电脑自带的酷狗音乐是在哪个盘里,电脑酷狗怎么在我的电脑显示酷狗音乐

2023-09-08

佛山五区均升级暴雨红色预警:各中小学、幼儿园已停课,部分景区已闭园

南方财经全媒体记者吴蓉佛山报道受台风“海葵”残余环流和季风影响,9

2023-09-08

谭惜陆离电视剧完结了吗

谭惜和陆离结婚三年,这三年里,陆离身边的女人从未重复过,直到谭惜和

2023-09-08

北京再推介近2000亿元项目引资民间

从引入民间资本参与方式看,民间资本参与方式更加多元化。具体来看,民

2023-09-08

首脑(首脑)

导读1、词语:首脑拼音:shǒunǎo词性:名词近义词:元首、领袖、首领

2023-09-01

资讯

胡松辉:澳门特区正在努力争取承办CBA赛事

昨晚,第六届粤澳杯第二回合的比赛在恩平体育中心落下帷幕,广东队以89∶77赢下比赛。两回合比赛,广东队以177∶160的优势获得本届比赛的冠

2022-07-08     
北京推出14条秋游文化线路

金秋时节,北京市文化和旅游局以赏银杏品文化为主题,推出14条“叶落的季节——漫步北京赏银杏品文化主题线路”,邀市民和游客以步行、骑行

2021-10-27     
基因编辑发力 培育高质量人源化供体猪

此次人体试验,仅仅验证了基因编辑猪克服异种器官移植的超急性排斥反应,还需解决延迟性排斥反应、消耗性血栓等问题。但通过这次试验,能更

2021-10-27     
中国经济高质量发展步伐稳健 长期向好基本面未变

在全球疫情走势和经济走势趋于复杂的背景下,中国经济巨轮将驶向何方,举世关注。2020年10月26日至29日,党的十九届五中全会在京举行,明确

2021-10-27     
南美解放者杯决赛允许近4.5万观众入场

南美洲足联主席多明格斯25日与今年解放者杯决赛对阵的两支俱乐部负责人会晤,宣布决赛现场观众人数增加到球场容量的75%,即近4 5万人。今年

2021-10-27     
22年从警生涯 面对荣誉他说不要给我报功

9月24日,时任安徽省安庆市公安局迎江分局刑警大队大要案中队中队长周磊因在工作中激烈搏斗引发心源性猝死,倒在了工作岗位上,经医院抢救

2021-10-27