1、首先由牛顿力学,单摆的运动可作如下描述: 单摆受到的重力矩为: M = - m * g * l * Sin x. 其中m为质量,g是重力加速度,l是摆长,x是摆角。
2、 我们希望得到摆角x的关于时间的函数,来描述单摆运动。
【资料图】
3、由力矩与角加速度的关系不难得到, M = J * β. 其中J = m * l^2是单摆的转动惯量,β = x"(摆角关于时间的2阶导数)是角加速度。
4、 于是化简得到 x" * l = - g * Sin x. 我们对上式适当地选择比例系数,就可以把常数l与g约去,再移项就得到化简了的运动方程 x" + Sin x = 0. 因为单摆的运动方程(微分方程)是 x" + Sin x = 0…………(1) 而标准的简谐振动(如弹簧振子)则是 x" + x = 0………………(2) 我们知道(1)式是一个非线性微分方程,而(2)式是一个线性微分方程。
5、所以严格地说上面的(1)式描述的单摆的运动并不是简谐运动。
6、 不过,在x比较小时,近似地有Sin x ≈ x。
7、(这里取的是弧度制。
8、即当x -> 0时有Sin x / x = o(1)。
9、)因而此时(1)式就变为(2)式,单摆的非线性的运动被线性地近似为简谐运动。
10、 然后说一下为什么是5°。
11、由于Sin x ≈ x这个近似公式只在角度比较小的时候成立(这一个可以从正弦函数的在原点附近的图象近似看出),所以只有在小角度下(1)式化作(2)式才是合理的。
12、 事实上5°≈0.087266弧度,Sin 5°≈0.087155,二者相差只有千分之一点几,是十分接近的。
13、在低精度的实验中,这种系统误差可以忽略不计(因为实验操作中的偶然误差就比它大)。
14、但如果换成25°,误差高达百分之三,就不宜再看成是简谐振动了。
15、 由于正弦函数的性质,这个近似是角度越小,越精确,角度越大越不精确。
16、如果角度很大(比如60度处,误差高达17%),就完全不能说它是简谐振动了。
本文到此分享完毕,希望对大家有所帮助。
关键词: